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Einstein’s theory of General Relativity (GR), the current “standard” theory of
gravitation, describes gravity as a universal deformation of the Minkowski metric:

gµν(xλ) = ηµν + hµν(xλ) , where ηµν = diag(−1, +1, +1, +1) . (20.1)

GR is classically defined by two postulates. One postulate states that the Lagrangian
density describing the propagation and self-interaction of the gravitational field is

LEin[gαβ] =
c4

16πGN

√
ggµνRµν(gαβ) , (20.2)

where GN is Newton’s constant, g = − det(gµν), gµν is the matrix inverse of gµν , and
where the Ricci tensor Rµν ≡ Rα

µαν is the only independent trace of the curvature tensor

Rα
µβν = ∂βΓα

µν − ∂νΓα
µβ + Γα

σβΓσ
µν − Γα

σνΓσ
µβ , (20.3)

Γλ
µν = 1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν) , (20.4)

A second postulate states that gµν couples universally, and minimally, to all the fields of
the Standard Model by replacing everywhere the Minkowski metric ηµν . Schematically
(suppressing matrix indices and labels for the various gauge fields and fermions and for
the Higgs doublet),

LSM[ψ, Aµ, H, gµν] = − 1
4

∑√
ggµαgνβF a

µνF a
αβ −

∑√
g ψ γµDµψ

− 1
2

√
ggµνDµHDνH −√

g V (H) −
∑

λ
√

g ψ Hψ , (20.5)

where γµγν + γνγµ = 2gµν , and where the covariant derivative Dµ contains, besides
the usual gauge field terms, a spin-dependent gravitational contribution. From the total
action follow Einstein’s field equations,

Rµν − 1
2
Rgµν =

8πGN

c4
Tµν . (20.6)

Here R = gµνRµν , Tµν = gµαgνβTαβ , and Tµν = (2/
√

g)δLSM/δgµν is the (symmetric)
energy-momentum tensor of the Standard Model matter. The theory is invariant
under arbitrary coordinate transformations: x′µ = fµ(xν). To solve the field equations
Eq. (20.6), one needs to fix this coordinate gauge freedom. E.g., the “harmonic gauge”
(which is the analogue of the Lorenz gauge, ∂µAµ = 0, in electromagnetism) corresponds
to imposing the condition ∂ν(

√
ggµν) = 0.

In this Review, we only consider the classical limit of gravitation (i.e. classical matter
and classical gravity). Quantum gravitational effects are expected (when considered
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2 20. Experimental tests of gravitational theory

at low energy) to correct the classical action Eq. (20.3) by additional terms involving
quadratic and higher powers of the curvature tensor. This suggests that the validity
of classical gravity extends (at most) down to length scales of order the Planck length

LP =
√

~GN/c3 ≃ 1.62 × 10−33 cm, i.e. up to energy scales of order the Planck

energy EP =
√

~c5/GN ≃ 1.22 × 1019 GeV. Considering quantum matter in a classical
gravitational background also poses interesting challenges, notably the possibility that
the zero-point fluctuations of the matter fields generate a nonvanishing vacuum energy
density ρvac, corresponding to a term −√

g ρvac in LSM [1]. This is equivalent to adding
a “cosmological constant” term +Λ gµν on the left-hand side of Einstein’s equations
Eq. (20.6), with Λ = 8πGN ρvac/c4. Recent cosmological observations (see the following
Reviews) suggest a positive value of Λ corresponding to ρvac ≈ (2.3 × 10−3eV)4. Such a
small value has a negligible effect on the non cosmological tests discussed below.

20.1. Experimental tests of the matter-gravity coupling

The universality of the coupling between gµν and the Standard Model matter
postulated in Eq. (20.5) (“Equivalence Principle”) has many observable consequences.
First, it predicts that the outcome of a local non-gravitational experiment, referred to
local standards, does not depend on where, when, and in which locally inertial frame, the
experiment is performed. This means, for instance, that local experiments should neither
feel the cosmological evolution of the universe (constancy of the “constants”), nor exhibit
preferred directions in spacetime (isotropy of space, local Lorentz invariance). These
predictions are consistent with many experiments and observations. Stringent limits on a
possible time variation of the basic coupling constants have been obtained by analyzing
a natural fission reactor phenomenon which took place at Oklo, Gabon, two billion years
ago [2,3]. These limits are at the 1 × 10−8 level for the fractional variation of the
fine-structure constant αem [3], and at the 4 × 10−9 level for the fractional variation of
the ratio mq/ΛQCD between the light quark masses and ΛQCD [4]. The determination
of the lifetime of Rhenium 187 from isotopic measurements of some meteorites dating
back to the formation of the solar system (about 4.6 Gyr ago) yields comparably strong
limits [5]. Measurements of absorption lines in astronomical spectra also give stringent
limits on the variability of both αem and µ = mp/me at cosmological redshifts. E.g.

∆αem/αem = (1.2 ± 1.7stat ± 0.9sys) × 10−6 (20.7)

at redshifts z = 1.0–2.4 [6], and

|∆µ/µ| < 4 × 10−7(95% C.L.) , (20.8)

at a redshift z = 0.88582 [7]. There are also strong limits on the variation of αem

and µ = mp/me at redshift z ∼ 103 from cosmic microwave background data, e.g.
∆αem/αem = (3.6 ± 3.7) × 10−3 [8]. Direct laboratory limits (based on monitoring the
frequency ratio of several different atomic clocks) on the present time variation of αem,
µ = mp/me, and mq/ΛQCD have reached the levels [9]:

d ln(αem)/dt = (−2.5 ± 2.6) × 10−17yr−1,
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20. Experimental tests of gravitational theory 3

d ln(µ)/dt = (−1.5 ± 3.0) × 10−16yr−1,

d ln(mq/ΛQCD)/dt = (7.1 ± 4.4) × 10−15yr−1. (20.9)

There are also experimental limits on a possible dependence of coupling constants on the
gravitational potential [9,10].

The highest precision tests of the isotropy of space have been performed by looking
for possible quadrupolar shifts of nuclear energy levels [11]. The (null) results can be
interpreted as testing the fact that the various pieces in the matter Lagrangian Eq. (20.5)
are indeed coupled to one and the same external metric gµν to the 10−29 level. For
astrophysical constraints on possible Planck-scale violations of Lorentz invariance, see
Ref. 12.

The universal coupling to gµν postulated in Eq. (20.5) implies that two (electrically
neutral) test bodies dropped at the same location and with the same velocity in an
external gravitational field fall in the same way, independently of their masses and
compositions. The universality of the acceleration of free fall has been verified, for
laboratory bodies, both on the ground [13,14]( at the 10−13 level) and, in space [15]( at
the 10−14 level):

(∆a/a)BeTi = (0.3 ± 1.8) × 10−13 ,

(∆a/a)BeAl = (−0.7 ± 1.3) × 10−13 ,

(∆a/a)TiPt = (−1 ± 9stat ± 9sys) × 10−15 . (20.10)

The universality of free fall has also been verified when comparing the fall of classical and
quantum objects (6 × 10−9 level [16]) , or of two quantum objects (5 × 10−7 level [17]) .
The gravitational accelerations of the Earth and the Moon toward the Sun have also been
verified to agree [18],

(∆a/a)EarthMoon = (−0.8 ± 1.3) × 10−13 . (20.11)

The latter result constrains not only how gµν couples to matter, but also how it couples
to itself [19]( “strong equivalence principle”).

Finally, Eq. (20.5) also implies that two identically constructed clocks located at two
different positions in a static external Newtonian potential U(x) =

∑
GNm/r exhibit,

when intercompared by means of electromagnetic signals, the (apparent) difference in
clock rate, τ1/τ2 = ν2/ν1 = 1 + [U(x1) − U(x2)]/c2 + O(1/c4), independently of their
nature and constitution. This universal gravitational redshift of clock rates has been
verified at the 10−4 level by comparing a hydrogen-maser clock flying on a rocket up to
an altitude ∼ 10, 000 km to a similar clock on the ground [20]. The redshift due to a
height change of only 33 cm has been detected by comparing two optical clocks based on
27Al+ ions [21].

June 5, 2018 19:55



4 20. Experimental tests of gravitational theory

20.2. Tests of the dynamics of the gravitational field in the weak
field regime

The effect on matter of one-graviton exchange, i.e., the interaction Lagrangian obtained
when solving Einstein’s field equations Eq. (20.6) written in, say, the harmonic gauge at
first order in hµν ,

hµν = −16πGN

c4
(Tµν − 1

2
Tηµν) + O(h2) + O(hT ) , (20.12)

reads −(8πGN/c4)Tµν −1(Tµν − 1
2
Tηµν). For a system of N moving point masses, with

free Lagrangian L(1) =

N∑

A=1

− mAc2
√

1 − v
2
A/c2, this interaction, expanded to order

v2/c2, reads (with rAB ≡ |xA − xB |, nAB ≡ (xA − xB)/rAB)

L(2) = 1
2

∑

A6=B

GN mA mB

rAB

[
1 +

3

2c2
(v2

A + v
2
B) − 7

2c2
(vA · vB)

− 1

2c2
(nAB · vA)(nAB · vB) + O

(
1

c4

) ]
. (20.13)

The two-body interactions, Eq. (20.13), exhibit v2/c2 corrections to Newton’s 1/r
potential induced by spin-2 exchange (“gravito-magnetism”). Consistency at the “post-
Newtonian” level v2/c2 ∼ GN m/rc2 requires that one also considers the three-body
interactions induced by some of the three-graviton vertices and other nonlinearities (terms
O(h2) and O(hT ) in Eq. (20.12)),

L(3) = −1

2

∑

B 6=A6=C

G2
N mA mB mC

rAB rAC c2
+ O

(
1

c4

)
. (20.14)

All currently performed gravitational experiments in the solar system, including
perihelion advances of planetary orbits, the bending and delay of electromagnetic
signals passing near the Sun, and very accurate ranging data to the Moon obtained by
laser echoes, are compatible with the post-Newtonian results Eqs. (20.12)–(20.14). The
“gravito-magnetic” interactions ∝ vAvB contained in Eq. (20.13) are involved in many
of these experimental tests. They have been particularly tested in lunar laser ranging
data [18], in the combined LAGEOS-LARES satellite data [22,23], and in the dedicated
Gravity Probe B mission [24].

Similar to what is done in discussions of precision electroweak experiments, it is
useful to quantify the significance of precision gravitational experiments by parametrizing
plausible deviations from GR. Here, we shall focus on the simplest, and most conservative
deviations from Einstein’s pure spin-2 theory defined by adding new, bosonic light or
massless, macroscopically coupled fields. The possibility of new gravitational-strength
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20. Experimental tests of gravitational theory 5

couplings leading (on small, and possibly large, scales) to deviations from Einsteinian
(and Newtonian) gravity is suggested by String Theory [25], and by Brane World
ideas [26]. Experiments have set limits on non-Newtonian forces down to the micrometer
range [27].

Here, we shall focus on the parametrization of long-range deviations from relativistic
gravity obtained by adding a strictly massless (i.e. without self-interaction V (ϕ) = 0)
scalar field ϕ coupled to the trace of the energy-momentum tensor T = gµνTµν [28,29].
The most general such theory contains an arbitrary function a(ϕ) of the scalar field, and
can be defined by the Lagrangian

Ltot[gµν , ϕ, ψ, Aµ, H] =
c4

16πG

√
g(R(gµν) − 2gµν∂µϕ∂νϕ)

+LSM[ψ, Aµ, H, g̃µν] , (20.15)

where G is a “bare” Newton constant, and where the Standard Model matter is coupled
not to the “Einstein” (pure spin-2) metric gµν , but to the conformally related (“Jordan-
Fierz”) metric g̃µν = exp(2a(ϕ))gµν . The scalar field equation gϕ = −(4πG/c4)α(ϕ)T
displays α(ϕ) ≡ ∂a(ϕ)/∂ϕ as the basic (field-dependent) coupling between ϕ and
matter [29,30]. The one-parameter (ω) Jordan-Fierz-Brans-Dicke theory [28] is the
special case a(ϕ) = α0ϕ leading to a field-independent coupling α(ϕ) = α0 (with
α0

2 = 1/(2ω + 3)). The addition of a self-interaction term V (ϕ) in Eq. (20.15) introduces
new phenomenological possibilities; notably the “chameleon mechanism” [31].

In the weak-field slow-motion limit appropriate to describing gravitational experiments
in the solar system, the addition of ϕ modifies Einstein’s predictions only through the
appearance of two “post-Einstein” dimensionless parameters: γ = −2α2

0/(1 + α2
0) and

β = + 1
2
β0α

2
0/(1 + α2

0)
2, where α0 ≡ α(ϕ0), β0 ≡ ∂α(ϕ0)/∂ϕ0, ϕ0 denoting the vacuum

expectation value of ϕ. These parameters show up also naturally (in the form γPPN = 1+γ,
βPPN = 1 + β) in phenomenological discussions of possible deviations from GR [32]. The
parameter γ measures the admixture of spin 0 to Einstein’s graviton, and contributes
an extra term + γ(vA − vB)2/c2 in the square brackets of the two-body Lagrangian
Eq. (20.13). The parameter β modifies the three-body interaction Eq. (20.14) by an
overall multiplicative factor 1 + 2β. Moreover, the combination η ≡ 4β − γ parametrizes
the lowest order effect of the self-gravity of orbiting masses by modifying the Newtonian
interaction energy terms in Eq. (20.13) into GABmAmB/rAB , with a body-dependent
gravitational “constant” GAB = GN [1+ η(Egrav

A /mAc2 +Egrav
B /mBc2)+O(1/c4)], where

GN = G exp[2a(ϕ0)](1 + α2
0) and where E

grav
A denotes the gravitational binding energy of

body A.

The best current limits on the post-Einstein parameters γ and β are (at the 68%
confidence level):

γ = (2.1 ± 2.3) × 10−5 , (20.16)

deduced from the additional Doppler shift experienced by radio-wave beams connecting
the Earth to the Cassini spacecraft when they passed near the Sun [33], and

|β| < 7 × 10−5 , (20.17)
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6 20. Experimental tests of gravitational theory

from a study of the global sensitivity of planetary ephemerides to post-Einstein
parameters [34]. More stringent limits on γ are obtained in models (e.g., string-inspired
ones [25]) where scalar couplings violate the Equivalence Principle.

20.3. Tests of the dynamics of the gravitational field in the
radiative and/or strong field regimes: pulsars

The discovery of pulsars (i.e., rotating neutron stars emitting a beam of radio noise)
in gravitationally bound orbits [35,36] has given us our first experimental handle on
the regime of radiative and/or strong gravitational fields. In these systems, the finite
velocity of propagation of the gravitational interaction between the pulsar and its
companion generates damping-like terms at order (v/c)5 in the equations of motion [37].
These damping forces are the local counterparts of the gravitational radiation emitted
at infinity by the system (“gravitational radiation reaction”). They cause the binary
orbit to shrink and its orbital period Pb to decrease. The remarkable stability of pulsar
clocks has allowed one to measure the corresponding very small orbital period decay
Ṗb ≡ dPb/dt ∼ −(v/c)5 ∼ −10−12 in several binary systems, thereby giving us a direct
experimental confirmation of the propagation properties of the gravitational field, and,
in particular, an experimental confirmation that the speed of propagation of gravity cg

is equal to the velocity of light c to better than a part in a thousand. In addition, the
surface gravitational potential of a neutron star h00(RNS) ≃ 2Gm/c2RNS ≃ 0.4 being a
factor ∼ 108 higher than the surface potential of the Earth, and a mere factor 2.5 below
the black hole limit (h00(RBH) = 1), pulsar data have allowed one to obtain several
accurate tests of the strong-gravitational-field regime, as we discuss next.

Binary pulsar timing data record the times of arrival of successive electromagnetic
pulses emitted by a pulsar orbiting around the center of mass of a binary system. After
correcting for the Earth motion around the Sun and for the dispersion due to propagation
in the interstellar plasma, the time of arrival of the Nth pulse tN can be described by
a generic, parametrized “timing formula” [38] whose functional form is common to the
whole class of tensor-scalar gravitation theories:

tN − t0 = F [TN (νp, ν̇p, ν̈p) ; {pK} ; {pPK}] . (20.18)

Here, TN is the pulsar proper time corresponding to the Nth turn given by
N/2π = νpTN + 1

2
ν̇pT

2
N + 1

6
ν̈pT

3
N (with νp ≡ 1/Pp the spin frequency of the pulsar, etc.),

{pK} = {Pb, T0, e, ω0, x} is the set of “Keplerian” parameters (notably, orbital period
Pb, eccentricity e, periastron longitude ω0 and projected semi-major axis x = a sin i/c),
and {pPK} = {k, γtiming, Ṗb, r, s, δθ, ė, ẋ} denotes the set of (separately measurable)
“post-Keplerian” parameters. Most important among these are: the fractional periastron
advance per orbit k ≡ ω̇Pb/2π, a dimensionful time-dilation parameter γtiming, the orbital

period derivative Ṗb, and the “range” and “shape” parameters of the gravitational time
delay caused by the companion, r and s.

Without assuming any specific theory of gravity, one can phenomenologically analyze
the data from any binary pulsar by least-squares fitting the observed sequence of pulse
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20. Experimental tests of gravitational theory 7

arrival times to the timing formula Eq. (20.18). This fit yields the “measured” values
of the parameters {νp, ν̇p, ν̈p}, {pK}, {pPK}. Now, each specific relativistic theory of

gravity predicts that, for instance, k, γtiming, Ṗb, r and s (to quote parameters that have
been successfully measured from some binary pulsar data) are some theory-dependent
functions of the Keplerian parameters and of the (unknown) masses m1, m2 of the pulsar
and its companion. For instance, in GR, one finds (with M ≡ m1 + m2, n ≡ 2π/Pb)

kGR(m1, m2) =3(1 − e2)−1(GNMn/c3)2/3 ,

γGR
timing(m1, m2) =en−1(GNMn/c3)2/3m2(m1 + 2m2)/M

2 ,

ṖGR
b (m1, m2) = − (192π/5)(1− e2)−7/2

(
1 + 73

24
e2 + 37

96
e4

)

× (GNMn/c3)5/3m1m2/M
2 ,

r(m1, m2) =GNm2/c3 ,

s(m1, m2) =nx(GNMn/c3)−1/3M/m2 . (20.19)

In tensor-scalar theories, each of the functions ktheory(m1, m2), γ
theory
timing(m1, m2),

Ṗ
theory
b (m1, m2), etc., is modified by quasi-static strong field effects (associated with

the self-gravities of the pulsar and its companion), while the particular function

Ṗ theory
b (m1, m2) is further modified by radiative effects (associated with the spin 0

propagator) [30,39,40].

Let us give some highlights of the current experimental situation. In the first discovered
binary pulsar PSR 1913+16 [35,36], it has been (recently [41]) possible to measure
five post-Keplerian parameters: k, γtiming, Ṗb, and (with less accuracy) r and s. [Even
more post-Keplerian parameters have been recently measured [41], but they cannot be
currently used to test gravity theories.] The five equations kmeasured = ktheory(m1, m2),

γmeasured
timing = γ

theory
timing(m1, m2), Ṗmeasured

b = Ṗ
theory
b (m1, m2), rmeasured = rtheory(m1, m2),

smeasured = stheory(m1, m2), determine, for each given theory, five curves in the
two-dimensional mass plane. [The less accurate measurements of r and s determine strips
rather than thin curves.] This yields three tests of the specified theory, according to
whether the five curves (or strips) have one point in common, as they should. After
subtracting a small (∼ 10−14 level in Ṗ obs

b = (−2.423 ± 0.001) × 10−12), but significant,
“galactic” perturbing effect (linked to galactic accelerations and to the pulsar proper
motion) [42], one finds that GR passes these three (combined radiative/strong-field) tests
with flying colors. The most accurate of these three tests involves the three quantities
(k − γtiming − Ṗb)1913+16, and is passed with complete success at the 10−3 level [36,43,41]

[
Ṗ obs

b − Ṗ
gal
b

ṖGR
b [kobs, γobs

timing]

]

1913+16

= 0.9983 ± 0.0016 . (20.20)

Here ṖGR
b [kobs, γobs

timing] is the result of inserting in ṖGR
b (m1, m2) the values of the masses

predicted by the two equations kobs = kGR(m1, m2), γobs
timing = γGR

timing(m1, m2). This
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8 20. Experimental tests of gravitational theory

yields experimental evidence for the reality of gravitational radiation damping forces at
the (−1.7 ± 1.6) × 10−3 level.

In the binary pulsar PSR 1534+12 [44] one has measured five post-Keplerian
parameters: k, γtiming, r, s, and (with less accuracy)Ṗb [45,46]. This yields three more
tests of relativistic gravity. Two among these tests accurately probe strong field gravity,
without mixing of radiative effects [45]. General Relativity passes all these tests within
the measurement accuracy. The most precise of the pure strong-field tests is the one
obtained by combining the measurements of k, γtiming, and s. Using the most recent

data [46], one finds agreement at the (2 ± 2) × 10−3 level:

[
sobs

sGR[kobs, γobs
timing]

]

1534+12

= 1.002 ± 0.002 . (20.21)

In the binary pulsar PSR J1141−6545 [47]( whose companion is probably a white
dwarf) one has measured four observable parameters: k, γtiming, Ṗb [48,49], and
the parameter s [50,49]. The latter parameter (which is equal to the sine of the
inclination angle, s = sin i) was consistently measured in two ways: from a scintillation
analysis [50], and from timing measurements [49]. GR passes all the corresponding tests
within measurement accuracy. See Fig. 20.1 which uses the (more precise) scintillation
measurement of s = sin i.

The discovery of the remarkable double binary pulsar PSR J0737−3039 A and B [51,52]
has led to the measurement of seven independent parameters [53,54,55]: five of them
are the post-Keplerian parameters k, γtiming, r, s and Ṗb entering the relativistic timing
formula of the fast-spinning pulsar PSR J0737−3039 A, a sixth is the ratio R = xB/xA
between the projected semi-major axis of the more slowly spinning companion pulsar PSR
J0737−3039 B, and that of PSR J0737−3039 A. [The theoretical prediction for the ratio
R = xB/xA, considered as a function of the (inertial) masses m1 = mA and m2 = mB , is
Rtheory = m1/m2 +O((v/c)4) [38], independently of the gravitational theory considered.]
Finally, the seventh parameter ΩSO,B is the angular rate of (spin-orbit) precession of PSR
J0737−3039 B around the total angular momentum [54,55]. These seven measurements
give us five tests of relativistic gravity [53,56,57]. GR passes all those tests with flying
colors (see Fig. 20.1). Let us highlight here two of them (from [57]) .

One test is a new confirmation of the reality of gravitational radiation at the 10−3 level

[
Ṗ obs

b

ṖGR
b [kobs, Robs]

]

0737−3039

= 1.000 ± 0.001 . (20.22)

Another one is a new, 5 × 10−4 level, strong-field confirmation of GR:

[
sobs

sGR[kobs, Robs]

]

0737−3039

= 1.0000 ± 0.0005 . (20.23)
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Figure 20.1: Illustration of the thirteen tests of relativistic gravity obtained in the
four different binary pulsar systems PSR1913+16 (3 tests), PSR1534+12 (3 tests),
PSR J1141−6545 (2 tests), and PSR J0737−3039 A,B (5 tests). Each curve (or
strip) in the mass plane corresponds to the interpretation, within GR, of some
observable parameter among: Ṗb, k ≡ ω̇Pb/2π, γtiming, r, s = sin i, ΩSO,B and
R. The shaded regions are excluded because they would correspond (in GR) to
s = | sin i| > 1. (Figure updated from [71]; courtesy of G. Esposito-Farèse.)

Fig. 20.1 illustrates the thirteen tests of strong-field and radiative gravity derived from
the above-mentioned binary pulsars: (5−2 =) 3 tests from PSR1913+16, (5−2 =) 3 tests
from PSR1534+12, (4 − 2 =) 2 tests from PSR J1141−6545, and (7 − 2 =) 5 tests from
PSR J0737−3039. [See, also, [58] for additional, less accurate, and partially discrepant,
tests of relativistic gravity.]

Data from several nearly circular binary systems (made of a neutron star and a white
dwarf) have also led to strong-field confirmations (at the 4.6 × 10−3 level) of the ‘strong
equivalence principle,’ i.e., the fact that neutron stars and white dwarfs fall with the
same acceleration in the gravitational field of the Galaxy [59,60,61]. The measurements
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10 20. Experimental tests of gravitational theory

of Ṗb in some pulsar-white dwarf systems lead to strong constraints on the variation
of Newton’s GN , and on the existence of gravitational dipole radiation [62,63,64,66,67].
In addition, arrays of millisecond pulsars are sensitive detectors of ultra low frequency
gravitational waves (f ∼ 10−9 − 10−8 Hz) [68,69]. Such waves might be generated by
supermassive black-hole binary systems, by cosmic strings and/or during the inflationary
era. Pulsar timing arrays have recently put strong constraints on current models of
supermassive black-hole binaries by finding no evidence for a background of gravitational
waves with periods between ∼ 1 and ∼ 10 years [70].

The constraints on tensor-scalar theories provided by the various binary-pulsar
“experiments” have been analyzed in [45,40,64,65,71,72] and shown to exclude a large
portion of the parameter space allowed by solar-system tests. Some of the most stringent
tests follow from the measurement of the orbital period decay Ṗb of low-eccentricity
pulsar-white dwarf systems (notably PSR J1738+0333 [64]) . Indeed, asymmetric binary
systems are strong emitters of dipolar gravitational radiation in tensor-scalar theories,
with Ṗb scaling (modulo matter-scalar couplings) like m1m2/(m1 + m2)

2(v/c)3, instead
of the parametrically smaller quadrupolar radiation Ṗb ∼ (v/c)5 [32,30]. As a result the
basic matter-scalar coupling α2

0 is more strongly constrained, over most of the parameter
space, than the best current solar-system limits Eq. (20.16), Eq. (20.17) (namely below
the 10−5 level) [64,65].

Measurements over several years of the pulse profiles of various pulsars have detected
secular profile changes compatible with the prediction [73] that the general relativistic
spin-orbit coupling should cause a secular change in the orientation of the pulsar beam
with respect to the line of sight (“geodetic precession”). Such confirmations of general-
relativistic spin-orbit effects were obtained in PSR 1913+16 [74], PSR B1534+12 [46],
PSR J1141−6545 [75], PSR J0737−3039 [54,55] and PSR J1906+0746 [76]. In some
cases (notably PSR 1913+16 and PSR J1906+0746) the secular change in the orientation
of the pulsar beam is expected to lead to the disappearance of the beam (as seen on the
Earth) on a human time scale (the second pulsar in the double system PSR J0737−3039
has already disappeared in March 2008 and is expected to reappear around 2035 [55]) .

20.4. Tests of the dynamics of the gravitational field in the
radiative and strong field regimes: gravitational waves

The observation, by the US-based Laser Interferometer Gravitational-wave Observatory
(LIGO), later joined by the Europe-based Virgo detector, of gravitational-wave (GW)
signals [77,78,79,80,81], has opened up a novel testing ground for relativistic gravity.
The four transient signals GW150914, GW151226, GW170104 and GW170814, are
most readily interpreted as the GW signals emitted (& 400 Mpc away) by the last
inspiralling orbits and the merger of binary black holes. The longer (∼ 100 s) and
louder (signal-to-noise ratio [SNR] ∼ 32) signal GW170817 is most readily interpreted as
coming from a binary neutron star inspiral (∼ 40 Mpc away), and was associated with
a subsequent γ-ray burst, followed by transient counterparts across the electromagnetic
spectrum [82]. Thanks to the rather high SNRs, respectively, ∼ 24, ∼ 13, ∼ 13, ∼ 18,
∼ 32, of the LIGO-Virgo observations, one could test consistency with GR in several
ways.
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For the binary black hole events, a first level of consistency check follows from the
good global agreement between the full observed signal and the signal predicted by both
analytical [83] and numerical [84] calculations of the gravitational waveform emitted
by coalescing black holes. In particular, the noise-weighted correlation between the
observed strain signal GW150914 and the best-fit GR-predicted waveform was found to
be ≥ 96% [85]. In other words, GR-violation effects that cannot be reabsorbed in a
redefinition of physical parameters are limited (in a noise-weighted sense) to less than
4%. A perturbed black hole has characteristic ringing GW modes [86], whose frequencies
and decay times are functions of the mass and spin of the black hole. The final black
hole (with mass Mf and dimensionless spin parameter af = Jf/(GNM2

f )) formed by

the coalescence of the two initial black holes emits, just after merger, a superposition of
such (rapidly decaying) ringing GW modes. Currently, only GW150914 has allowed one
to test the consistency between the observed signal and the (separately considered) GR
predictions for the inspiral signal (up to the GW frequency fend inspiral = 132 Hz), the
post-inspiral one (fGW ≥ fend inspiral), and also, to some extent, the post-merger signal
(merger being defined as the moment where the GW amplitude hµν reaches a maximum).
First, the joint posterior distribution for Mf and af , obtained by separately best fitting
to the corresponding GR predictions either the inspiral signal or the post-inspiral one,
have been found to be consistent (see Fig. 4 in [85]) . A second, less accurate, check has
found consistency between the measurement of the frequency and decay time of the first
(least-damped) ringing mode from the latish post-merger signal, and the values inferred
(using GR predictions) from fitting the entire signal (see Fig. 5 in [85]) .

Quantitatively more precise tests have been obtained from GW151226, which features
a much longer signal (∼ 55 GW cycles). The most accurate test has consisted in
phenomenologically allowing the numerical coefficient ϕ3 (parametrizing the contribution

proportional to f
−2/3
GW in the frequency evolution of the Fourier-domain phase of the

GW signal during the early inspiral) to vary [87,88]. [This contribution is physically
related to “tail” effects in the curved spacetime propagation of the GW signal.] The
90 % credible limit on the fractional variation of ϕ3 obtained from GW151226 data is
∆ϕ3/ϕ3 ≤ 0.1 [88]. The three-detector observation of GW170814 has allowed one to
probe the polarization content of the GW signal: the data were found to strongly favor
the GR-predicted pure tensor polarization of GWs [80].

GR predicts that GWs are non dispersive, and propagate at the same velocity as light.
One can phenomenologically modify the GR-predicted GW phase evolution by adding
the putative effect of an anomalous dispersion relation of the form E2 = p2c2 + Apαcα.
GW data have been used to set bounds on the anomalous coefficient A for various values
of the exponent α (see Fig. 5 in [79]) . The case α = 0 is equivalent to assuming that
gravitons disperse as a massive particle [89]. Combined GW data lead to the following
phenomenological limit on the graviton mass: mg ≤ 7.7 × 10−23eV/c2 [79]. [See [90]
for other graviton mass bounds.] Finally, the observed time delay of ∼ 1.7 s between
GW170817 and the associated γ-ray burst constrains the fractional difference between
the speed of GWs and the speed of light to be between −3× 10−15 and +7× 10−16 [91].

Contrary to the solar-system, and binary-pulsar, tests, the phenomenological GW
emission tests deduced from black hole merger signals do not directly constrain the most
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conservative class of theoretical deviations from GR obtained by adding a light scalar
field ϕ, as in Eq. (20.15). Indeed, the no-hair properties of (4-dimensional) black holes
mean that ϕ does not couple to black holes, so that, when neglecting large-scale external
gradients (or fine-tuned initial data), light scalar fields have no effect on either the
dynamics or the GW emission of black hole binaries.

20.5. Conclusions

All present experimental tests are compatible with the predictions of the current
“standard” theory of gravitation: Einstein’s General Relativity. The universality of the
coupling between matter and gravity (Equivalence Principle) has been verified around the
10−14 level. Solar system experiments have tested the weak-field predictions of Einstein’s
theory at the few 10−5 level. The propagation properties (in the near zone) of relativistic
gravity, as well as several of its static strong-field aspects, have been verified at the
10−3 level (or better) in several binary pulsar experiments. Interferometric detectors
of gravitational radiation have given direct observational proofs of the existence, and
properties, of gravitational waves (in the wave zone), and of the existence of coalescing
black holes, and they have started to explore several dynamic aspects of strong-field
gravity. Recent laboratory experiments have set strong constraints on sub-millimeter
modifications of Newtonian gravity. Quantitative confirmations of GR have also been
obtained on astrophysical scales. The GR action on light and matter of an external
gravitational field has been verified in many gravitational lensing systems [92]. Some
tests on cosmological scales are also available [93]. Beyond the quantitative limits on
various parametrized theoretical models discussed in the latter reference, one should
remember the striking (strong-field-type) qualitative verification of GR embodied in the
fact that relativistic cosmological models give an accurate picture of the Universe over
a period during which the spatial metric has been blown up by a gigantic factor, say
(1 + z)2 ∼ 1019 between Big Bang nucleosynthesis and now (though a skeptic might wish
to keep in mind the two “dark clouds” of current cosmology, namely the need to assume
dark matter and a cosmological constant).
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